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Abstract. Practical methods for the numerical implementation of the uniform swallowtail 
approximation have been developed. This approximation arises in the uniform asymptotic 
evaluation of oscillating integrals with four coalescing saddle points. A complex contour 
quadrature technique has been used to evaluate the swallowtail canonical integral S ( x ,  y ,  z )  
and its partial derivatives dS/ax, aS/ay, as/&. This method has the advantage that it is 
straightforward to implement on a computer and results of high accuracy are readily 
obtained. A comparison is made with other methods that have been reported in the 
literature for the evaluation of S ( x ,  y ,  z ) .  Isometric plots of IS(x,  y ,  211, laS/axl, laS/ayl, 
laS/dzI are presented and some properties of the zeros of S(0, y ,  z )  that lie on the line 
y = 0 are also discussed. Two methods for the evaluation of the mapping parameters 
( x ,  y ,  I) are described: an iterative method that is valid when ( x ,  y ,  z )  is not close to the 
swallowtail caustic and an algebraic method valid for ( x ,  y ,  z )  on the caustic and for y = 0. 
Symbolic algebraic computer programs have been used to carry out the necessary algebraic 
manipulations. In practice both methods for determining ( x ,  y ,  z )  are complementary. An 
application of the uniform swallowtail approximation to the butterfly canonical integral 
has been made. The uniform asymptotic swallowtail approximation can now be regarded 
as a practical tool for the evaluation of oscillating integrals with four coalescing saddle points. 

1. Introduction 

An important step in many short wavelength scattering theories is the uniform 
asymptotic evaluation of oscillating integrals of the form 

cc 

I ( & )  = j-, d t )  exp[if(a; t ) lhI  dt, k+0. (1.1) 

In ( l . l) ,  g ( t )  andf(cr; r )  are analytic functions of their arguments, and cy = ( a l ,  a 2 , .  . .) 
is a set of real parameters. We shall also assume that f ( a ;  t )  is real for real values of 
t. In addition g ( t )  may depend on (Y but this has not been indicated explicitly. 

When asymptotic techniques are used to evaluate I ( a ) ,  it is well known (Bleistein 
and Handelsman 1975) that the main contribution comes from regions around the 
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stationary phase or saddle points t, of f (a ;  t ) ,  which are defined by 

af(a; t ) / a t  = 0 for t =  t , (a) ,  i=l,2,. . . . (1.2) 

Equation (1.2) shows that the positions of the saddle points depend on a, and so can 
move close together or coalesce as a varies. When this coalescence is allowed for in 
the uniform asymptotic integration, the result is expressed in terms of certain canonical 
integrals and their partial derivatives (Ludwig 1966, Bleistein 1967, Rice 1968, Ursell 
1972, Connor 1974). Each canonical integral is characteristic of a given number of 
coalescing saddle points. 

The present paper is concerned with the case of three real parameters and four 
(real or complex) saddle points. The canonical integral is then given by 

X 

S(x,  y, z ) =  e x p [ i ( ~ ~ + x ~ ~ + y ~ ~ + ~ ~ ) ] d ~  (1.3) L 
with x ,  y and z real, and its partial derivatives are 

a2 

u3  exp[ i (uS+xu3+yu2+~u) ]  du, as(x, Y, 2) 

ax 

U' exp[i(uS+xu3+ yu2+ zu)] du, 

X 

as(x' '")=i 1 U exp[ i (uS+xu3+yu2+zu)]du.  
az -cc 

(1.4) 

The exponent in the integrands of (1,3)-(1.6) is the universal unfolding of the 
swallowtail catastrophe in elementary catastrophe theory (Thom 1975, Poston and 
Stewart 1978, Saunders 1980, Gilmore 1981) and we shall therefore call S(x, y, z )  
the swallowtail canonical integral. Although we shall be using the language of elemen- 
tary catastrophe theory throughout this paper, it is important to note that all the 
uniform asymptotic expansions for the integral (1.1) were originally obtained without 
the help of catastrophe theory (Ludwig 1966, Bleistein 1967, Rice 1968, Ursell 1972, 
Connor 1974). 

The purpose of this paper is to describe methods that can be used in the numerical 
implementation of the uniform swallowtail approximation. In § 2, we present (to 
lowest order) the explicit expression for the uniform swallowtail approximation. This 
expression shows that there are three problems that must be overcome in practice 
before we can numerically apply the swallowtail approximation to any given problem. 
Firstly, we must evaluate S ( x ,  y ,  z ) ,  dS/ax ,  aS/ay and aS/az accurately and efficiently 
for many values of ( x ,  y, z ) .  For example the isometric plots shown later in figures 
3-5 require 175692 evaluations of these integrals. Secondly, we need techniques for 
expressing the arguments x ,  y and z of the swallowtail integral in terms of the exponent 
f ( a ;  t )  of (1.1). Thirdly, the terms that multiply S(x, y, z )  and its partial derivatives 
must be calculated from the pre-exponential factor g ( t )  in (1.1). We will see in § 2 
that this third problem is the easiest one to solve. 

In § 3,  we show that a quadrature method recently developed by two of us (Connor 
and Curtis 1982) can be used for the accurate numerical evaluation of S(x ,  y, z )  and 
its partial derivatives. We present isometric plots of lS(x, y, z ) l ,  laS/axl, ldS/ayl and 
ldS/azl to illustrate some of the properties of these integrals. For S(x, y, z )  we also 
compare our results with those obtained by Pearcey and Hill (1963), Wright (1977), 
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Dronov et a1 (1978) and Pope (1981). In addition we discuss some properties of the 
zeros of S ( 0 ,  y, z ) .  

Section 4 considers the problem of obtaining the arguments of the swallowtail 
integral from f ( a ;  t ) .  Two methods are described for solving this problem. The first 
method is an iterative scheme similar to that employed previously in our calculations 
for the uniform Pearcey approximation (Connor 1973, Connor and Farrelly 1981). 
The second method is more algebraic in nature and exploits results from the theory 
of equations and the theory of symmetric polynomials. We have used several symbolic 
algebraic computer programs to carry out the necessary algebraic manipulations. In 
order to illustrate the methods developed in this paper, we consider in 0 5 the asymptotic 
evaluation of the butterfly canonical integral. Our conclusions are in § 6. 

The swallowtail canonical integral (1.3) plays an important role in several short 
wavelength phenomena including the elastic, inelastic and reactive scattering of atoms 
and molecules (Connor 1974,1976, Connor et al 1982, Dickinson and Richards 1982), 
collisional broadening in molecular orbital x-ray spectra (Fritsch and Wille 1978), 
heavy nuclear ion collisions (Da Silveira 1978, Crowley 19801, the asymptotic evalu- 
ation of path integrals (Levit and Smilansky 1977, Dangelmayr and Veit 1979, 
Schulman 1981), optical caustics (Lee 1983, Berry and Upstill 1980, Stewart 1981, 
Hannay 1982, 19831, the theory of inverse scattering (Dangelmayr and Guttinger 
1982), the propagation of radio waves (Lukin and Palkin 1976, 1978, Dronov et a1 
1978, Arnold 19821, bound-continuum matrix elements (Kriiger 1981), ncn-adiabatic 
transitions (Vartanyan 1980), synchro-Compton radiation of relativistic electrons 
(Leubner 1981a, b, 1982), as well as in general theories of high frequency scattering 
(Pearcey 1963, Kravtsov 1967, 1968, Maslov 1972, Maslov and Fedoriuk 1981, 
Guillemin and Sternberg 1977, Gorman et a1 1981, Arnold 1978, Peslyak 1981), see 
also Barrett (1978). However, none of these works make any numerical applications 
of the uniform swallowtail approximation, the only exception being the very recent 
papers of Leubner (1981b, 1982). However in his applications the saddle points are 
always complex, so we necessarily have t1 = r-: and t z  = t z ,  and there are also additional 
symmetry restrictions on their positions which help simplify the numerical treatment. 
In contrast, the techniques we shall describe in this paper apply for any configuration 
of the saddle points. in particular for cases where there are two or four real saddle 
points. These cases give rise to the most interesting structure in S ( x ,  y, z )  and its 
derivatives. 

2. Uniform asymptotic expansion 

In this section we give to lowest order the uniform asymptotic expansion for the integral 
(1.1) whenf (a ;  t )  possessesfour saddle points. From equation (3.8) of Connor (1976), 
we have for h +. 0 

where Uk(x, y ,  z )  denotes the integral 

u k  e ~ p [ i ( u ~ + x ~ ~ + y u * + z u ) ] d u ,  k = O , l , 2 , 3 .  (2.2) 
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It is evident that U,,(x, y, z )  for k = 0, 1, 2. 3 are proportional to  the swallowtail 
integral (1.3) and its partial derivatives (1.4)-( 1.6). 

The parameters x,  y, z and A in (2.1) are obtained from the nonlinear set of 
equations 

f ( a ; t, ) = u + x u  3 + yu + zu, + A, 

5uJ+3xu*+2yu  + z = 0. 

i = 1 , 2 , 3 , 4 ,  

where the U, for i = 1, 2, 3, 4 are the roots of the quartic equation 

(2.3) 

(2.4) 

We also assume that the t, and f ( a ;  t , )  on the left-hand side (LHS) of (2.3) are known. 
The saddle points t, and U, are labelled so that 

f ( a ;  t )  = u 5 + x u 3 +  y u z +  zu + A  (2.5) 

defines a local one-to-one uniformly analytic change of variables from t to u = u ( a ;  t ) .  
The new parameters x, y, z and A are functions of a but not of t. It is important to  
note that the local change of variables (2.5) is exact and not a truncated Taylor 
expansion. The correct labelling of the {U,} can usuaily be done by inspection, for 
example by examining the paths of the { t , (a) }  in the complex t plane as a varies. 
Sometimes it is also useful to inspect the Taylor expansion of f ( a ;  t )  to  fifth order 
since then the complex t and U planes become identical up to  a scale transformation. 

The final set of unknowns in (2.1) that we must determine is q k  for k = 0, 1, 2, 3. 
These quantities are obtained from the linear equations (Connor 1976) 

Since the LHS of (2.6) is assumed to  be known, we can readily solve these four linear 
equations to  obtain the q k .  The only point of numerical difficulty occurs when two or  
more saddle points have coalesced. In this situation the LHS of (2.6) becomes numeri- 
cally indeterminate, being of the form ( O / O ) ” ‘ .  The simplest way to  avoid this difficulty 
is to  return to the original integral (1.1) and Taylor expand f ( a ;  t )  and g ( t )  about 
the point of coalescence of the saddle points, thereby obtaining a transitional approxi- 
mation to  I (  a )  (Connor 1976). This transitional approximation is numerically satisfac- 
tory for values of t very close to, or at, the point of coalescence. The transitional 
approximation does not destroy the uniform nature of the expansion (2.1) but rather 
is contained within it as a special case. Since the determination of the q k  is in principle 
straightforward, we d o  not consider this problem any further. It should also be 
remembered that the derivation of the uniform expansion (2.1) assumes that g ( t )  does 
not possess any zeros or  other singularities close to the saddle points. 

Finally we note that essentially the same expansion (2.1) applies to a class of 
multidimensional integrals of the form (see 0 5 of Connor 1974) 

2. 

g ( t , ,  f 2 , .  . . , t,) exp[if(a; t l ,  t 2 , .  . . , t , ) / h ]  dt ,  dt, . . . dt, 

g ( t )  exp[if(a; t ) / h ]  dr. (2.7) 

Suppose that f ( a ;  t )  has four saddle points which coalesce at t“” for a = a. and assume 
that the corank of f ( a o ;  t“))  is 1, i.e. the rank of the Hessian matrix [ d 2 f ( a o ;  t ‘ o ’ ) / d t ,  at,] 
is n - 1. Then for (a ,  f )  close to  ((Yo, t ( ( ” ) ,  we can make the exact local change of 
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variables defined by 

f ( ~ ; t ) = ~ ~ + ~ u ~ + y u ~ + z ~ , + A + Q ( u ~ , ~  3 , . . . , ~ n )  (2.8) 

where Q( uz,  u3 , .  . . , U,) is a Morse function in the remaining n - 1 variables. These 
variables can now be removed by integration and the problem reduces to a one- 
dimensional integral of the type (1.1) (for more details see Connor (1974, 1976)). 

3. Calculation of S(x, y ,  z )  and its partial derivatives 

In this section, we describe an efficient method for the numerical evaluation of S(X, y, z ) ,  
aslax, aslay and dS/dz, and discuss the results we have obtained. 

3.1. Numerical calculations 

We have recently described a quadrature method for the evaluation of the oscillating 
integrals associated with the cuspoid catastrophes (Connor and Curtis 1982). It is this 
method we have applied to S(x, y, z )  and its partial derivatives. 

We explain our implementation of the method for S(x, y, z ) ,  the treatment for 
aS/ax, aS/ay ,  as/& being similar. First we write S(x, y, z )  as the sum of the following 
two integrals: 

S(x, y, z )  = exp[i( u 5 +  xu'+ yu2+ z u ) ]  du + exp[i(-u5- xu3+ yu2- zu ) ]  du. 

(3.1) 
I,: J(: 

1, - I,.- 
Next we exploit Cauchy's theorem and Jordan's lemma to write (3.1) in the form 

S(x, y, z )  = exp[i(u5+xu3+ yu'+ z u ) ]  d u +  exp[i(-u5-xu'+ y u 2 - z u ) ]  du 

(3.2) 

where the integration contours r+ and r- are shown in figure 1. The contour Ti, for 
example, proceeds from the origin to a point R on the real U axis, then along an arc 
of a circle to the point R exp(i.rrll0) and finally out to CO exp( i r l l 0 ) .  

By choosing R sufficiently large, the infinite integrals along I', from R exp(+i.rr/lO) 
to exp(+i.rr/lO) can be made negligibly small. We accomplished this by choosing 
R to be the largest real root of (Connor and Curtis 1982) 

r 5 +  x sin(3.rr/10)r3+ y sin(2.rr/10)r2+ z sin(r /10)r-  100 = 0. (3.3) 

This choice ensures that the modulus of the integrands of the infinite integrals are less 
than e-'00. 

In a previous application of this quadrature method to Pearcey's integral (Connor 
and Curtis 1982), we used 16-point gaussian integration to evaluate the remaining 
two finite integrals. For the present application, w e  again employed gaussian integration 
for the integration from ( R ,  0) to R exp(*i.rr/lO), but for the integral from (0,O) to 
( R ,  0) we used an adaptive integrator, which is especially suited for oscillating non- 
singular integrands and which has recently become available in the Numerical 
Algorithms Group Library (1981a). 
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In addition, it was found that the efficiency of the integration method could be 
improved by a 'corner cutting' technique (Connor and Curtis 1982). In this the 
integration along the arc from ( R ,  0) to R exp(*i.ir/lO) is replaced by an integration 
along a straight line from ( A ,  0) to R exp(*i.ir/lO) where O <  A < R. Empirically the 
choice A = (1.5 + R ) / 2  was found to be satisfactory. This alternative corner cutting 
contour is also shown in figure 1. 

By means of the techniques just described, we were able to calculate S ( x ,  y ,  z ) ,  
dS/ax, aS /ay  and dS/az to at least seven figure accuracy over the grid -10 < x < 10, 
O s  y < 10 and -10 < z < 10. Note that we need only carry out calculations for y 3 0, 
because of the relation 

(3.4) 

We checked the accuracy of our computations in three ways. 
(a) For small x,  y and z ,  we numerically summed the exact series representation 

for S(x, y, z )  (Connor 1974, Connor et a1 1983), which is given by 

S ( X ,  - y ,  2 )  = S*(x, y,  2 ) .  

x {exp[i( 1 + 61 + 7m + 8 n )  r /  101 

+ (- 1) exp[-i( 1 + 61 + 7 m  + 8 n )  r/ lo]}. ( 3 . 5 )  
The series representation (3.5) converges for all x, y and z and on differentiation, the 
series representations for aslax, a S / d y  and dS/dz are obtained. We always obtained 
agreement to at least seven significant figures between the results from the quadrature 
method and the series representation. 

(b) In another paper (Connor et a1 1983), we have developed a differential equation 
method for the numerical evaluation of S(x, y,  z ) ,  dS/dx, d S / d y  and aS/dz. This 
method integrates a set of coupled ordinary differential equations satisfied by S(x, y ,  z ) .  
The method is numerically stable for values of ( x ,  y ,  z )  inside the tail of the swallowtail 
caustic (see figure 2), but eventually becomes numerically unstable outside this region. 
In the region of numerical stability, the differential equation and quadrature methods 
always agreed to at least five significant figures. 
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inside the tA i l  o f  t he  swollow 
Ifour real stot ionory phase points)  

Figure 2. The caustic for the swallowtail catastrophe 

(c) For the integral 
X 

F ( z ) = ( 2 ~ ) - ’  l-x exp[i(ts/5+zt)]dt  

Kruger (1981) has given the asymptotic trapezoid formula 
N 

F ( z 1 - h  1 & [ h ( k + $ ) l  
k = O  

where h is the step length and 

(3.6) 

(3.7) 

(3.8) - 1  4(  t )  = T 

with a > 0. We used values of a = 1, h = 0.1 and N up to  40, obtaining agreement to  
at least eight significant figures with our quadrature method when -17.0 < z < 17.0. 
Note that S(O,O, z )  and F ( z )  are related by 

exp( -a  5/5 - za - cut4+ 2a3 t2 )  cos[ts/5 - 2a’t3 + ( a 4 +  z ) t ]  

S(O,0, z )  = ( 2 ~ / 5 ” ~ ) F ( z / 5 ” ~ ) .  (3.9) 

Finally we remark that S(x, y ,  z )  can be expressed in terms of Airy-Hardy integrals 
of order five (Watson 1966) for the special case x = 5 a ,  y = 0  and z = 5a2.  

3.2. Results 

In tables 1 and 2, we report numerical values of S(x, y, z) ,  dS/dx, & / a y  and dS/dz 
for x , y , z  in the range - 8 . O C x s 4 . 0 ,  O s y s 8 . 0  and - 4 . 0 s z s 8 . 0 .  Note that 
S(x, 0. z) ,  dS(x, 0, z)/dx and dS(x, 0, z) /dz are purely real whereas d S / d y  for y = 0 is 
purely imaginary. The values in tables 1 and 2 are not suitable for interpolation 
purposes, rather they are given so that readers can check the accuracy of their own 
computer programs when using the present quadrature technique or some other 
numerical method. 

Figures 3-5 show isometric plots of lS(x, y ,  z)1, ldS/dxl, ldS/dyl and ldS/dz l  for 
x = 4, 0, -6 respectively. These figures, together with those for the y and z sections 
shown in Connor et af (1983),  illustrate in a systematic manner the main properties 
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Table 1. Values of the swallowtail canonical integral S ( x ,  y, z )  and its derivative aS/dx. 
Note that these values are not suitable for interpolation purposes. 

-8.0 
-8.0 
-8.0 
-8.0 
-8.0 
-8.0 
-8.0 
-8.0 
-8.0 
-8.0 
-8.0 
-8.0 
-4.0 
-4.0 
-4.0 
-4.0 
-4.0 
-4.0 
-4.0 
-4.0 
-4.0 
-4.0 
-4.0 
-4.0 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
4.0 
4.0 
4.0 
4.0 
4.0 
4.0 
4.0 
4.0 
4.0 
4.0 
4.0 
4.0 

0.0 
0.0 
0.0 
0.0 
4.0 
4.0 
4.0 
4.0 
8.0 
8.0 
8.0 
8.0 
0.0 
0.0 
0.0 
0.0 
4.0 
4.0 
4.0 
4.0 
8.0 
8.0 
8.0 
8.0 
0.0 
0.0 
0.0 
0.0 
4.0 
4.0 
4.0 
4.0 
8.0 
8.0 
8.0 
8.0 
0.0 
0.0 
0.0 
0.0 
4.0 
4.0 
4.0 
4.0 
8.0 
8.0 
8.0 
8.0 

-4.0 
0.0 
4.0 
8.0 

-4.0 
0.0 
4.0 
8.0 

-4.0 
0.0 
4.0 
8.0 

-4.0 
0.0 
4.0 
8.0 

-4.0 
0.0 
4.0 
8.0 

-4.0 
0.0 
4.0 
8.0 

-4.0 
0.0 
4.0 
8.0 

-4.0 
0.0 
4.0 
8.0 

-4.0 
0.0 
4.0 
8.0 

-4.0 
0.0 
4.0 
8.0 

-4.0 
0.0 
4.0 
8.0 

-4.0 
0.0 
4.0 
8.0 

-0.127 926 
0.834 808 
1.399 509 

-1.242 289 
0.335 222 
0.445 859 
1.028 569 
0.103 103 
0.272 153 
1.252 635 
0.342 893 
0.249 568 
0.499 340 
1.292 366 
1.762 313 
0.283 634 

-0.269 035 
0.871 603 
0.287 285 

-0.443 670 
0.863 798 
0.674 440 
0.441 549 
0.043 569 

-0.650 212 
1.746 461 

-0.018 329 
-0.000 200 

0.934 004 
0.246 876 
0.648 861 

-0.145 050 
0.268 91 1 
0.088 816 
0.300 086 
0.318 946 
0.977 637 
0.969 252 
0.145 824 
0.006 031 
0.178 618 
1.167 437 
0.188 905 

-0.019 771 
0.923 594 
0.145 392 
0.868 786 

-0.210 106 

0.0 
0.0 
0.0 
0.0 
0.140 466 

0.448 795 
-0.100 687 

-0.960 347 
-0.918 526 

0.597 791 
-0.942 189 
-0.378 296 

0.0 
0.0 
0.0 
0.0 

-0.774 994 
0.795 804 

-0.050 953 
-0.387 741 

0.381 639 
0.405 010 

-0.070 475 
-0.349 045 

0.0 
0.0 
0.0 
0.0 
0.207 328 
0.945 782 

-0.768 462 
0.133417 
0.178 526 
0.374 295 

-0.093 529 
-1.137 172 

0.0 
0.0 
0.0 
0.0 
0.323 542 
0.327 591 

-0.247 068 
-0.018 961 

0.203 421 
0.856 692 

-0.428 015 
-0.126 207 

-3.953 975 
5.137 042 

-4.122 258 
0.022 815 

1.025 633 
2.378 969 

-2.173 409 

-1.490439 
-0.882 258 

4.711 406 
0.133 977 
2.439 104 

-2.692013 
-2.668 336 
-2.139 382 

1.076 655 
-1.310 667 
-2.105 000 
-0.041 723 

0.710 333 
1.895 486 

-0.386 186 
-1.930 586 

0.254 491 
0.758 251 

-0.442 899 
0.103 036 

-0.005 828 
0.808 996 
0.464 762 

-0.536 053 
0.132 543 

-0.01 1 252 
-0.252 956 
-0.745 858 
-1.019 773 

0.088 131 
-0.077 223 

0.015 940 
0.003 855 
0.125 541 

-0.083 282 
0.004 864 
0.009 778 
0.027 546 
0.343 326 

-0.253 788 
0.089 696 

0.0 
0.0 
0.0 
0.0 

0.683 959 
-1.470 893 

4.543 323 
-1.432 001 

0.129 286 
2.727 696 

-2.714 808 
0.0 
0.0 
0.0 
0.0 

-1.907 003 
1.009 805 
1.888 670 
1.500 717 
0.091 227 

-2.009 470 
0.514 006 
1.928 173 
0.0 
0.0 
0.0 
0.0 

-0.230 302 
0.659 704 
0.049 610 

-0.111 015 
1.224 533 
1.129 520 
0.766 520 

0.0 
0.0 
0.0 
0.0 
0.276 008 

-0.148 715 
0.052 835 

-0.007 565 
-0.538 384 

0.280 580 
-0.084 391 

0.033 892 

-3.352 497 

-0.353 428 
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Table 2. Values of the derivatives of the swallowtail canonical integral a S / d y  and as/&. 
Note that these values are not suitable for interpolation purposes. 

X Y z R e  aslay Im a s l a y  R e  aS/az Im aS/az 

-8.0 
-8.0 
-8.0 
-8.0 
-8.0 
-8.0 
-8.0 
-8.0 
-8.0 
-8.0 
-8.0 
-8.0 
-4.0 
-4.0 
-4.0 
-4.0 
-4.0 
-4.0 
-4.0 
-4.0 
-4.0 
-4.0 
-4.0 
-4.0 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
4.0 
4.0 
4.0 
4.0 
4.0 
4.0 
4.0 
4.0 
4.0 
4.0 
4.0 
4.0 

0.0 
0.0 
0.0 
0.0 
4.0 
4.0 
4.0 
4.0 
8.0 
8.0 
8.0 
8.0 
0.0 
0.0 
0.0 
0.0 
4.0 
4.0 
4.0 
4.0 
8.0 
8.0 
8.0 
8.0 
0.0 
0.0 
0.0 
0.0 
4.0 
4.0 
4.0 
4.0 
8.0 
8.0 
8.0 
8.0 
0.0 
0.0 
0.0 
0.0 
4.0 
4.0 
4.0 
4.0 
8.0 
8.0 
8.0 
8.0 

-4.0 
0.0 
4.0 
8.0 

-4.0 
0.0 
4.0 
8.0 

-4.0 
0.0 
4.0 
8.0 

-4.0 
0.0 
4.0 
8.0 

-4.0 
0.0 
4.0 
8.0 

-4.0 
0.0 
4.0 
8.0 

-4.0 
0.0 
4.0 
8.0 

-4.0 
0.0 
4.0 
8.0 

-4.0 
0.0 
4.0 
8.0 

-4.0 
0.0 
4.0 
8.0 

-4.0 
0.0 
4.0 
8.0 

-4.0 
0.0 
4.0 
8.0 

0.0 
0.0 
0.0 
0.0 

-1.182 796 
0.696 370 
0.582 336 
0.582 916 
2.371 367 

-0.147 618 
2.546 623 
0.027 618 
0.0 
0.0 
0.0 
0.0 
1.257 383 
0.090 366 
0.122 079 

-0.293 065 
-1.198 412 

0.189 405 
0.967 928 

-0.090 752 
0.0 
0.0 
0.0 
0.0 

-0.653 688 
-0.490 979 

0.589 899 
-0.174 125 
-0.056 481 

0.143 347 
0.511 061 
0.921 990 
0.0 
0.0 
0.0 
0.0 

-0.188 915 
0.029 348 
0.040 790 

-0.016 560 
-0.071 676 
-0.381 472 

0.298 342 
-0.084 492 

-1.541 981 
0.275 967 
1.571 155 

-2.640 845 
0.848 992 

1.860 085 
0.004 567 

-0.350 475 
1.183 267 

-0.363 666 
0.775 058 
0.986 215 
0.839 926 
1,966 182 
1.118637 

-0.580 895 
-0.581 570 
-0.857 428 
-0.939 458 

0.105 875 
0.965 747 

-0.249 592 
-0.968 101 
-0.760 029 

0.350 130 
-0.130 615 

0.007 450 
0.434 653 

-0.638 989 
0.042 989 
0.043 096 

-2.161 289 

-0.757 639 
-0.794 665 
-0.533 516 

0.314 171 
0.266 933 
0.015 740 

-0.047 945 
-0.005 048 
-0.252 703 

0.211 804 
-0.088 672 
-0.004 665 

0.51 1 466 
-0.326 117 

0.167 870 
-0.096 365 

-0.71 1 633 
1.263 724 

- 1.076 744 
-0.367 763 
-0.416 318 

0.447 043 
0.247 886 

-0.166 810 
0.409 847 
0.829 056 
0.933 649 
0.518 804 

-0.916 172 
-0.817 108 
-1.750 736 

1.210015 
-0.046 769 
- 1.043 62 1 

0.059 691 
-0.029 873 

0.380 754 
-0,119055 
-0.479 674 
-0.081 688 

0.930 533 
-0.521 521 
-0.077 957 

0.004 685 
0.622 351 
0.351 794 

-0.711 305 
0.181 630 

-0.026 670 
-0.112 713 
-0.350 187 
-0.947 274 

0.486 345 
-0.284 722 
-0.092 998 
-0.005 815 

0.228 719 
-0.096 172 
-0.173 936 

0.006 384 
0.013 028 
0.394 706 

-0.401 209 
0.024 153 

0.0 
0.0 
0.0 
0.0 

-0.659 324 
0.155 905 

-0.290 777 
0.928 174 

-0.342 089 
0.555 834 
0.410 654 

-0.836 967 
0.0 
0.0 
0.0 
0.0 

0.591 813 
0.393 398 
0.607 063 
0.342 982 

-0.531 297 
0.021 106 
0.416 393 
0.0 
0.0 
0.0 
0.0 
0.132 002 
0.492 871 

-0.230 270 
0.049 547 
0.659 286 
0.523 013 
0.261 236 

-0.273 923 
0.0 
0.0 
0.0 
0.0 
0.584 494 

-0.365 880 
0.059 412 
0.021 492 

-0.337 563 
0.321 830 

-0.349 319 
0.175 803 

-0.985 828 
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Figure 3. Isometric plots of ( a )  IS(*, y ,  z)l, ( b )  laS/axl, (c )  (aS/iJyl and ( d )  liJS/azl for 
x = 4. The numbers on the caustic section ( e )  are the number of real stationary phase 
points in different regions of (x, y ,  z )  space. 

of the modulus of S(x, y, z) and its derivatives. We also show in figures 3-5 the 
appropriate x sections of the swallowtail caustic of figure 2. 

The swallowtail caustic plays an important role in rationalising the structure in the 
isometric plots. It is obtained by eliminating real u from the equations 

(3.10) 

(3.11) 

Equation (3.10) with u real or complex also defines the number of real (and hence 
complex conjugate) stationary phase points in different regions of (x, y, z) space. The 
number of real stationary phase points is indicated in figure 2, which also defines the 
regions ‘inside the body of the swallow’, ‘outside the body of the swallow’ and ‘inside 
the tail of the swallow’. 

Equation (3.11) is the condition for two or more of these stationary phase points 
to be equal. Using the standard formula for the discriminant of a fourth-degree 
polynomial (Ferrar 1943, Shafee and Shafee 1978), we obtain 

8 1 ~ ~ ~ - 2 7 ~ ~ ~ ~ - 3 6 0 ~ ~ ~ ~ + 5 4 0 ~ ~ ~ ~ -  135y4+40Oz3=0. (3.12) 

Equation (3.12) shows explicitly that the swallowtail caustic is symmetric about y = 0. 
The caustic surface in figure 2 is defined by the condition that two or more real roots 

5u4+ 3xu2+ 2yu + z = 0, 

20u3 + 6xu + 2y = 0. 
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Figure 4. Same as figure 3 except for x = 0. 

of (3.10) are equal, whereas (3.12) also includes the possibility that two complex roots 
are equal. This possibility occurs on the line y = 0, x = 2(5z)”’/3, z > 0 which is the 
‘complex whisker’ mentioned by Poston and Stewart (1976) and Wright (1981). The 
line y = 0, x = -2(52)”’/3, z > 0 on the other hand corresponds to the coalescence 
of two pairs of real roots and is the line of self-intersection of the caustic in figure 2. 

The trends revealed in figures 3-5 are similar to those discussed in detail in Connor 
et a1 (1983). It should also be noticed that the folds in the integrals are damped out 
for a given x in the order IS(x, y, z)l+ laS/azl+ laS/ayl+ laS/dxl as IyI increases from 

Another interesting property of S(x, y, z )  is its zeros which occur on lines in ( x ,  y ,  2) 

space. We shall consider the zeros of S(0, y, z )  in more detail. Because the zeros of 
S(0, y, z )  cannot be seen in figure 4, we show in figure 6 an isometric plot of InlS(0, y, z)l 
for 0 s y s 8.0 and -20.0 s z s 20.0. The zeros of S(0, y,  z )  can be clearly seen lying 
along the line y = 0. Notice that the isometric plot shows no numerical irregularities 
even for values of IS(O,O,  z)1 as small as 1O-8. This demonstrates the high accuracy 
of our quadrature method. 

In table 3 we report the positions of 12 zeros of S ( O , O ,  2) that lie on either side 
of z = 0. We calculated the zeros by a continuation method based on a secant iteration 
(Numerical Algorithms Group 1981b). This method allows the zeros to be calculated 
to an accuracy of about seven significant figures when used in conjunction with our 
quadrature method. 

y = o .  
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Figure 5. Same as figure 3 except for x = -6. 

Figure 6. Isometric plot of InJS(x, y ,  z)l for x = 0, 0 s y c 8, -20 s z s 20. 

It is also interesting to compare the accurate zeros in table 3 with the results of 
the stationary phase (or saddle point) method. In the lit region where z < 0, there are 
two real stationary phase points for S(0 ,  0, z ) ,  as well as two complex conjugate ones. 
The real stationary phase points are situated at U = * ( - ~ / 5 ) ” ~ .  If we neglect the 
contribution from the complex ones, then the first-order stationary phase method gives 
(Pearcey and Hill 1963) 

S(0:  0, Z )  - [ ( 2 ~ ) ” ~ /  5 ’/’( - z ) ~ ” ]   COS[^( -4~)”~ -+TI, (3.13) z<0, 
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Table 3. Zeros of S(O,O,  z )  for -19.0< z < 19.0. The accurate numerical zeros have been 
found using the quadrature method of 5 3.1. The asymptotic zeros have been calculated 
using the first-order stationary phase and saddle point methods and are given by (3.14) 
and (3.16) respectively. 

Accurate Asymptotic Accurate Asymptotic 

-18.995 8 -18.988 3 
-16.711 5 -16.702 3 
-14.346 5 -14.335 0 
-11,880 3 -11.865 0 

-9.280 09 -9.257 81 
-6.484 75 -6.448 70 

-3.412 46 -3.274 09 
3.800 13 3.733 86 
8.044 26 8.019 30 

11.784 1 11.769 5 
15.247 1 15.237 0 
18.523 5 18.515 8 

and the zeros are therefore located at 

z = -5[br(n  n=O,1 ,2 , .  , . . (3.14) 

On the dark side where z > 0, all the saddle points are complex, being located at 
u ’ ~  = ( . ~ / 5 ) ” ~  exp(ia.rr), u2 = (~1 .5) ”~  exp(i$r), u3 = U? and u4 = U;. In the saddle point 
method, the only saddle points which contribute are u1 and u2 and we then find to 
first order (Pearcey and Hill 1963) 

From (3.15) the zeros on the dark side are located at 

In table 3, we compare the results from (3.14) and (3.16) with the accurate numerical 
results. On the bright side, the n = 0 zero from the first-order stationary phase method 
has an absolute error of 0.14 decreasing to only 0.0075 for n =6 .  On the dark side, 
the corresponding errors for the first-order saddle point method are 0.066 for m = 0 
and 0.0077 for m =4 .  

3.3. Discussion 

The isometric plots presented in figures 3-5 together with those in figures 2-4 of 
Connor et a1 (1983) require 24 X 121 X 121 = 351 384 evaluations of the integrals. It 
is therefore important to compare the efficiency and accuracy of the contour integral 
technique of § 3.1 with other methods that have been used in the literature. Calculations 
of S(x ,  y ,  z )  have been carried out by Pearcey and Hill (1963), Wright (1977), Dronov 
et a1 (1978) and Pope (1981). We are not aware of any previous computations for 
aslax, aslay or aS/az. 

3.3.1. Differential equation methods. As mentioned in § 3.l(b),  a completely different 
method solves a set of coupled ordinary differential equations satisfied by S ( x ,  y ,  z ) .  
This method was first used by Pearcey and Hill (1963) for the special case of S(0, y, z )  
and has been generalised (and simplified) to cases where x f 0 by ourselves (Connor 
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et a1 1983). The advantage of this method is that dS/ax, a s l a y  and dS/az are obtained 
at the same time as S ( x ,  y ,  z )  and values of the integrals at intermediate points (x’,  y ‘ ,  z ’ )  
along the integration path are also readily obtained. The differential equation method 
is therefore a very efficient way of generating large grids of points such as are required 
for contour and isometric plots. The main disadvantage of this method is that it 
eventually becomes numerically unstable as we move out of the tail region of the 
swallowtail caustic. 

3.3.2. Integration along complex contours. Another method used by Pearcey and Hill 
(1963) for S(0, y ,  z )  consists of integration along rays in the complex U plane. In 
terms of figure 1, the rays they used are r exp( *ir/lO). The same integration paths 
have been used by Dronov eta1 (1978) for S ( x ,  y ,  z ) .  The disadvantage of these paths 
(Pearcey and Hill 1963, Connor and Curtis 1982) is that for certain values of (x, y, z ) ,  
the modulus of the integrand becomes very large before it becomes exponentially small 
as r + E. In these cases, numerical accuracy is lost or it becomes impossible to obtain 
meaningful results. It was to avoid these problems that the alternative paths in figure 
1 were introduced (Connor and Curtis 1982). In general, integration along suitably 
chosen contours in the complex U plane can produce results of high accuracy (e.g. 
seven or eight significant figures) and the method is straightforward to  program on a 
computer. 

3.3.3. Integration along real contours. The numerical methods of Wright (1977) and 
Pope (1981) involve integration along the real U axis. The method of Wright (1977) 
is similar to that originally used by Airy (1838) for his integral. When S(x, y, Z) has 
two or four real stationary phase points, Wright’s method consists of a quadrature 
around the region of these stationary phase points. The remainder of the integral is 
then estimated by a three-term asymptotic expansion. In this way, an accuracy of 
about 10.005 was obtained for S(x ,  y ,  2) by Wright. By including additional terms in 
the asymptotic series, more accurate results could be obtained. 

By simply replacing the infinite limits in S(x ,  y ,  x) with finite values, Pope (1981) 
was able to obtain an accuracy of about kO.01, and reported that a grid containing 
4000 points took about 7.8 hours to calculate on a CDC 6400 computer. Evidently 
the simplicity of this method is offset by its computational inefficiency. 

It is well known (Davis and Rabinowitz 1975, Rice 1975, Engels 1980, Phillips 
1980) that the numerical integration of infinite integrals with oscillating integrands is 
a difficult problem and a number of recent papers discuss different real contour 
approaches to this problem (Guderley 1975, Pantis 1975, Blakemore et a1 1976, 
Hillion and Nurdin 1977, Ting and Luke 1981, Fettis and Pexton 1982). In particular, 
Blakemore et a1 (1976) examined the performance of three basic integration methods 
when applied to eleven different test integrals. One of these methods (due to Pantis 
1975) is similar to the method of Airy (1838) and Wright (1977). However Winterbon 
(1978) has pointed out that deforming the path of integration into the complex U 
plane is greatly superior to all the real U methods discussed by Blakemore et a1 (1976). 
We believe along with Pearcey and Hill (1963) and Dronov et a1 (1978) that a similar 
situation holds for the swallowtail canonical integral and its derivatives, and recommend 
exploiting complex contours of integration because they are easy to use and high 
accuracy is obtainable (see also Rice 1975 and Lugannani and Rice 1981). In principle 
the best integration contour would be the path of steepe4t descent through the relevant 
saddle points. 
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3.3.4. Asymptotic methods. When x, y or z become large, asymptotic techniques can 
be used for the evaluation of S(x, y ,  z ) .  In the region of the cuspoidal edges belonging 
to the caustic of figure 2, the uniform Pearcey approximation is the appropriate 
asymptotic method in use (Ursell 1972, Connor 1973, Connor and Farrelly 1981). 
On the fold lines, the simpler uniform Airy approximation can be employed (Chester 
et a1 1957). This approximation was used by Wright (1977) inside the body of the 
swallow for (x, y ,  z )  close to the ‘complex whisker’ where two complex saddle points 
have coalesced. Finally, when all the stationary phase or saddle points are well separated 
from one another, the appropriate asymptotic technique is the simple stationary phase 
or saddle point method. Asymptotic approximations cannot be used close to ( O , O ,  0), 
but in this region it is straightforward to sum numerically the exact series representation 
(3.5). This strategy has been adopted by Stamnes and Spjelkavik (1983) for Pearcey’s 
integral. 

When asymptotic methods are valid it should be noted that it is not necessary to 
invoke the uniform swallowtail approximation for the original oscillating integral (1.1). 
Rather f ( a ;  t )  can be mapped directly onto the cusp, fold or Morse canonical poly- 
nomial forms as appropriate. From this point of view further discussion of asymptotic 
methods for the evaluation of S(x, y, z )  is beyond the scope of the present paper. 

3.3.5. Other methods. Another possible method (Doyle 1982) for the numerical 
evaluation of S(x, y ,  z )  makes use of the projection identities derived by Berry and 
Wright (1980). Defining 

T 

exp[i(au4+&c2u2 + cl U)] du (3.17) I_, $,C(Cl, c2) = (2?T-112 

$S(CI ,  c2, c 3 )  = (27T)-1’2 

and 
sc 

exp[i(fu5 + f c 3 ~ ’  + i c2u2  + c1 U)] du (3.18) I-. 
then Berry and Wright have shown that 

I I L S ( C 1 ,  c73 c3)l ‘ - - 2 3 ’ s ~ - 1 , ‘ 2  j-1 $s(24’s[~4+ c 7 u 2 +  c2u + C , ] ,  0, 2 2 ” [ 6 ~ 2 +  c3])  du 

and 
(3.19) 

X 

l$s(cl, c2, c3)I 2 -  - 2  3 1 2  T-l’*Re [--,du ( 8 u ) - ” J e x p [ i ( ~ u 5 + ~ c 3 u ’ + 2 c l u ) ]  

x $ ~ [ 2 (  8 u ) - I ” c 2 ~ ,  4(8 U)-”’( 2U + C 3 K ) I .  (3.20) 

Since GC(x, y )  and CLs(x, y,  z )  are evidently closely related to P ( x ,  y)  and S(x, y, z )  
respectively, these identities would allow the calculation of IS(x, y, z)1 in terms of 
S(x,  0, z )  and P ( x ,  y) .  The disadvantage of this method is that the integrands of the 
identities (3.19) and (3.20) are considerably more complicated than is the integrand 
of the usual integral representation (1.3) for S(x, y, z ) .  In particular, in order to exploit 
the power of the complex contour integration method it would be necessary to 
analytically continue S(x, 0, z )  and P ( x ,  y )  to complex values of x, y and 2. This is a 
very difficult task compared with the analytic continuation of the integrand of (1.3). 
In  addition the identities do not allow arg S(x. y ,  -7) to be calculated. This quantity is 
required for the uniform approximation (2 .1  ) .  
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3.3.6. Comparison of numerical results for S(x, y ,  z ) .  In 9 0  3.3.1-5 we have compared 
different methods for the evaluation of S(x, y ,  2). We now wish to  compare the 
numerical results obtained by some of these methods with the results from the contour 
integral method of Q 3.1. 

The first calculations were by Pearcey and Hill (1963), who in an unpublished 
monograph reported contour plots for IS(0, y, z)l and arg S(0, y, z )  for 0 s  y S 8 and 
-9 s z s 9. Three numerical techniques were used to construct their contour plots: 
solution of differential equations, integration in the complex U plane along the rays 
arg U = * T /  10 of figure 1 and the use of asymptotic series. Our results for S(0, y, z )  
agree with those of Pearcey and Hill (1963). 

More extensive computations were reported by Wright (1977) for the integral 
(3.18). Note that &(z,  y ,  x) and S ( x ,  y, z )  are related by 

S(X, y,  z )  = [ ( 2 ~ ) ” ~ / 5 ’ ” ] l ( / ~ ( 5 - ” ~ ~ ,  (2/5”5)y, (3/5”l”)x). (3.21) 

In the tail of the swallow and outside its body, the real U axis method outlined in 
Q 3.3.3 was used, whereas inside the body (uniform) asymptotic techniques were 
employed (see 0 3.3.4). Wright presented plots of I$Ls(c‘l, c2, c3)l and arg ICIs(cI, c2 ,  c3 )  
for c3 = 6, 0, -4, -8 with 0 C c2 S 15 and -10 4 c ,  s 20. Because of their complexity, 
the contours were not labelled, rather shading techniques were used (see also figure 
3.6 of Berry and Upstill (1980)). We can therefore only qualitatively compare our 
results with those of Wright, but when this is done, they are in agreement. 

Dronov et a1 (1978) have shown contour plots of IS(x, y, z)l and arg S(x, y, z )  for 
x =  1, 0, -1, -2, -3 for O s  y s  8 and - 8 s  z S 8 .  Their plots, although not very 
detailed, are in agreement with our results. They used integration in the complex U 

plane along the rays arg U = *T /  10 of figure 1. 
Finally we consider the numerical results of Pope (1981). Figure 13.10 of Gilmore 

(1981) shows an isomeiric plot for the modulus of the swallowtail canonical integral. 
According to pp 339-42 of Gilmore (1981), the plot illustrated is for the integral 

(3.22) 

for b = 1 and -15 S c s 5 and -5 S d S 10. We were unable to reproduce by our 
contour integral method the plot presented by Gilmore. 

However, according to Pope (1981), the results shown by Gilmore actually represent 
the integral 

(3.23) 

for b = 1. We computed (3.23) by our contour integral method, but were still unable 
to reproduce Pope’s results. We therefore believe that the results shown in figure 
13.10 of Gilmore (1981) are wrong. 

l 2  a 

Ip (b ,  c, d )  = I I., e x p [ i . r r ( f ~ ~ + f b u ~ + t c ~ ’ + d u ) ]  du 

4. Calculation of x, y, z and A 

In this section, we describe two methods for solving (2.3) and (2.4) for the unknowns 
x,  y, z and A. The first method is an iterative numerical technique which is a 
generalisation of a procedure used earlier for the uniform Pearcey approximation 
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(Connor and Farrelly 1981). The second method adopts an algebraic approach, and 
uses results from the theory of equations and the theory of symmetric polynomials. 
In practice both methods are complementary. The iterative method is described in 
9 4.1 and the algebraic method in 0 4.2. Some important practical points associated 
with both methods are discussed in 9 4.3. 

Throughout this section, it will be convenient to change variable, U -$ ~ / 5 l ' ~ ,  in 
the mapping equation (2.3), as well as to redefine x, y, z according to X - , X / ~ ~ / ~ ,  

y -$ z + 2 / 5 ' / ' .  Equation (2.3) then becomes 

f(a; ti) =ius +xu! + yu: +zu, +A, i = 1,2,3,4, (4.1) 

where the U; = ui(x, y, z )  are the roots of 

U; +3xu; +2yu; + 2 =o, i = 1,2,3,4. 

We shall also use the abbreviation fi = f ( c u ;  t i ) .  

(4.2) 

4.1. Iterative method 

First we simplify equation (4.1). Multiplying (4.2) by U, shows that 

i = 1,2,3,4, 3 us = -3xu1 - 2yuf - zu,, 

f 1 5  ='xu? +$yu?+;zu,+A, i = 1,2,3,4. (4.3) 

f i  - f 2 ,  f3+f4-f1 -f2, f 3  -f49 (4.4) 

and equation (4.1) then becomes 

Next we form the following differences: 

where the t, are labelled so that the differences (4.4) are either purely real or purely 
imaginary (the stationary points t,, i = 1, 2, 3, 4, like the f i ,  are either real, or occur 
in complex conjugate pairs). Equation (4.3) can now be written as a matrix equation: 

U: - u :  U: - u :  U1 - U2 2x f l  - f 2  

u3- U4 

(4.5) 
Since the t, and U, are labelled in a one-to-one manner 

tl * 4, i = 1,2,3,4, 

the differences in the 3 X 3 matrix are also either purely real or purely imaginary. This 
means that (4.5) can always be rewritten in a purely real form and we assume that 
this simplification has been done. 

Equation (4.5) is now solved by iteration. Starting from an initial guess xo, yo, zo, 
the u,(xo, yo, zo) in the 3 X 3 matrix are calculated by solving (4.2). The linear equations 
(4.5) are then solved to yield improved values xl, yl, zl. This process is repeated until 
convergence is obtained. The remaining variable A can then be obtained from (4.3). 

The method just described is simple in principle, but in practice there can be 
difficulties, e.g. in the choice of the initial guess (xo, yo, zo) and in the convergence of 
the method as (x, y, z )  approaches the caustic set. Methods for dealing with these 
difficulties are discussed in 9 4.3. Note that the method fails for values of (x, y, z )  
actually on the caustic, i.e. where two or more of the U, are equal. 
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4.2. Algebraic method 

The strategy of the second method is to eliminate the ui from (4.3) using results from 
the theory of equations and the theory of symmetric polynomials (Uspensky 1948, 
Archbold 1970, Peregrine and Smith 1979, Connor and Farrelly 1981, Uzer and Child 
1982). 

First we define the elementary symmetric polynomials (Mostowski and Stark 1964, 
p 346) 

together with 

4 

T 1 { r l } =  r , = r l + r 2 + r 3 + r 4 ,  
r = l  

4 4  

T ~ {  rr } = rrrl = rl r2 + rl r3 + rl r4 + r2r3 + r2r4 + r3 r4,  
1’1 r = 1  

(4.6) 

(4.7) 

A A A A  

4 

s , , {r i }= r: = r? + r ;  + r ;  + r z ,  n = 1 , 2 , 3 , .  
r = l  

(4.9) 

(4.10) 

(note that s l { r l } = T l { r i } ) .  The quantity s , { r l }  is introduced to facilitate the use of 
Newton’s formulae (Uspensky 1948, pp 260-2). Next we construct the quantities 

(4.11) 

(4.12) 

(4.13) 

(4.14) 

Since the fi are assumed to be known, f, 2, E, rI are also known quantities. Notice 
that 2, E, II are always real even if fl is complex. The aim now is to express [ 2,  
E, Il in terms of s,,{u,}, and hence by Newton’s formulae in terms of x ,  y, z. Equations 
(4.11)-(4.14) will then result in four simultaneous polynomial equations for x ,  y, z,  A. 

To achieve this aim, we use the identities 

7z{fI - f >  = 72{fr} - 3771 {fi} + 67’, 

73{fi - f >  = 73{fi) - 2772{fi} 

(4.15) 

(4.16) 37’ TI{ f~ } - 47 3 ,  

74{ f i  - 71 = 74{ f i  1 - 7 7 3 {  fi 1 f 2  72{  fi - f ’ 71 { fi } + T4. (4.17) 

together with (Mostowski and Stark 1964, p 358) 

(4.18) 

(4.19) 

(4.20) 
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Equations (4.15)-(4.21) allow f, E, E, Il to be written in terms of s1{fi}(=4f), Sz{fi}, 

The next step is to use (4.3) to express s ,{ f i}  in terms of s,{ui}. For example, for 
s3{fi}, s4{fi}. 

sl{fi} and s2{ f i }  we have from (4.3): 

sl{fl} = 4xs3{ ui> ++ys2{ u l>  + ~ z s , {  ui> + 4A, (4.22) 

sz{fi} = [4x2s6{ui} + 12xyss{ u i }  + (16x2 + 9y2)s4{ ui} + (20xA + 2 4 ~ 2 )  s3{ u l }  

+ (16z2+ 30yA)s2{ul}+40zAs,{ul}+ 100A2]/25. (4.23) 

The final step is to express the s,{ui}, n = 1, .  . . , 12, in terms of x, y, z using Newton's 
formulae (Uspensky 1948, pp 260-2). From (4.2), we find sl{ui}  = 0, s2 {u i }=  -6x, 
s3{ u i }  = -6y, s4{ u l }  = 1 8x2 - 42 and 

Sq+k+3XSZ+k +2ysl+k+zsk = o ,  k = l , 2 , 3  , . . . .  (4.24) 

The steps described above are simple in principle but involve a very large amount 
of algebraic manipulation. To overcome this problem, the calculations have been 
carried out using both the REDUCE and SCHOONSHIP algebraic manipulation 
computer programs. As an additional check, the algebra has also been performed 
using the MACSYMA computer program. The results obtained are 

+A- '  2xy7 (4.25) 

2 = ~ ( Y X ' - ~ X ~ Z  - ~ X ~ Y ~ + ~ X Z ~  + 3y2z), (4.26) 

E=&y(81x6-  1 5 3 ~ ~ ~ - 4 1 x ' y ~ + 8 8 ~ ~ ~ ~ + 3 6 x y ~ ~ + ~ y ~ -  162'), (4.27) 

II = A(243x7y2- 5 1 3 ~ ' ~ ' ~  +?$x4yJ+ 1 6 ~ ' ~ ~  + 344x'y2z2 +yx2yqz  

(4.28) 

Equations (4.26), (4.27) and (4.28) represent three simultaneous polynomial 
equations for x, y, z. These can be solved in principle and the remaining variable A 
can then be obtained from (4.25). Note that in general (4.26)-(4.28) contain many 
solutions for x, y, z in addition to the particular solution we are interested in. 

There are, however, practical difficulties in attempting a solution of (4.26), (4.27) 
and (4.28) for x, y, z. One approach would be to use the theory of resultants (Mostowski 
and Stark 1964, ch 10) to deduce from (4.26)-(4.28) a single polynomial equation 
in x, one in y and one in 2, and then to  solve these three single variable polynomial 
equations by a numerical procedure. The difficulty with this approach is that the 
degrees of the resulting x, y and z polynomials are so large that they would cause 
severe problems for numerical root finding procedures. 

Another approach is to regard (4.26)-(4.28) as a set of nonlinear equations. If 
the RHS of (4.261, (4.27) and (4.28) are denoted by C(x, y, z ) ,  3 ( x ,  y ,  z )  and n(x ,  y, z )  
respectively then we could attempt to minimise the function 

F(x, y, z ) = ( ~ ( x ,  y, z)-Z) '+(Z(X, y, z)-Z)'+(II(X, y, z)-n) ' .  (4.29) 

The difficulty with this method is that F(x, y, z )  contains many stationary points which 
are not roots of F(x,  y,  z )  = 0 and numerical procedures tend to find them unless the 
initial guess is very good. In this situation, (4.29) has no advantage over the iterative 
technique of § 4.1.  

128 2 4 162 6 336 2 3 - 2 7  4 2 256 5 --j-x z +-j-xy - 7 x y  z 5 y  z +ij-z ). 
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There is, however, one case where the algebraic method is very useful. This is 
when (x, y, z )  actually lies on the caustic, i.e. when x, y, z satisfy the equations 

u4+3xu2+2yu+z=0,  4u3 + 6xu + 2y = 0. (4.30) 

For any x and y, these equations imply that z is constrained to a maximum of three 
possible (real) values. This is also evident from figure 2 or equation (3.12). Since it 
is assumed that we know which of the U,, i = 1, 2, 3, 4, have coalesced, the three 
possible values for z are actually reduced to one as explained in figure 5.7 of Gilmore 
(1981). The numerical procedure for determining (x, y, z )  on the caustic then consists 
of finding the roots of 

(4.31) 

This is a much simpler problem than finding the roots of the unconstrained function 
(4.29). 

There is also a particular case where the polynomial equations (4.26)-(4.28) can 
be considerably simplified. This is when y = 0, and we then obtain 

F(x,  y7 z(x, Y)) = 0. 

(4.32) 

(4.33) 

(4.34) 

Note that y = 0 implies that f (a ,  t )  - A  is locally an odd function and that the U, satisfy 

U1 = -u3, U2 = -U+ (4.35) 

It is now possible to use the theory of resultants (Mostowski and Stark 1964, ch 10) 
to reduce (4.32) and (4.34) to  two single polynomial equations in x and z. We find 
28345-1 3x25 - 28335-102x20 + 24315-871 1 ~ 2 ~ 1 5  - 233-25-65031~3~lO~ 3-5pX5 

(4.36) - 3-322nx5+223-1.5-417114x.5-215-3~5= 0 

and 
2443-45-2OZ25 + 2313-45-151 71 191nz20 - 23'3-25-1 1 1 2 z 2 0  + 2163-1 5-1 1 12712331n2z15 

- 2175-6371~2nz1S + 2165-224z15 + 28345-771 1491n3z10 

- 212335-222n2z10+2s355-331 'I14z5 - 38n5 = 0. (4.37) 

Equation (4.36) is a fifth-degree polynomial in x5 and similarly (4.37) is a fifth-degree 
polynomial in z5 .  These polynomials can readily be solved numerically, and yield a 
maximum of 25 real pairs for (x, z )  (i.e. up to five real x values from (4.36) and up 
to five real z values from (4.37)). Substituting back into (4.32) and (4.34) reduces 
the number of acceptable pairs, and a final reduction to one pair is made from the 
fact that the U, and fi are in a known one-to-one correspondence 

fi - U,, i = 1,2,3,4. (4.38) 

4.3. Practical considerations 

The iterative method is most useful for (x, y, z )  not close to the caustic, whereas the 
algebraic method is applicable for (x, y, z )  on the caustic and for y = 0. In numerical 
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applications of these methods, there are a number of practical considerations that must 
be kept in mind. 

(a) In some problems, the I f ( & ;  ?,)I are numerically large, which results in large 
values for the parameters x ,  y, 2. This tends to make the numerical procedures in the 
iterative method unstable. In this situation, it is useful to scale the mapping equation 
(4.1). If we write U = av, then (4.1) becomes 

f ( a ;  t , ) / a 5 = i v :  + x ’ u :  + y ’ v f  + z ’ v , + A ’ ,  i = 1 ,2 ,3 ,4 ,  (4.39) 

with 

x ’  = x / a 2 ,  y ’ =  y/a3,  t i  = 4 a 4 ,  A’ = A l a S .  

Any convenient value for a that results in relatively small values for x ‘ ,  y‘, 2’ can be 
used. In our iterative calculations we have chosen 

a = [max( I f l  - f217 I f3  + f 4  - f l  - f21,  I f 3  - f41 
(b) The speed and stability of the iterative method is dependent on a good choice 

for the initial values XO, yo. 20. We used the following procedure to obtain these initial 
estimates. 

The first step is to construct the polynomial 

( f - f 1 ) ( t - t 2 ) ( t - f 3 ) ( t - f 4 ) .  (4.40) 

This can be written in the alternative form 

t4- 71(f,}t3+ T2{fl}f2-73{fl}f+ 74{fl} (4.41) 

and with the change of variable t = s + ~ 7 1 { f , }  the expression (4.41) becomes 

S 4 +  (72-$7i )S2+ ($7172- 73-47;)s + 74-$7173+&7:72-&7;. (4.42) 

We then set 

(4.43) 

This method for choosing xo,  yo, 20 corresponds to fitting a fourth-degree polynomial 
through the stationary phase points t , ,  i = 1, 2, 3,  4. Furthermore if we define 

h, 3 h ( s , )  + x ~ s ; ’  + YoST +LOS, (4.44) 

where s, = t ,  - $ ~ ~ { t , } ,  we can introduce as before the scaled parameters (from s, = br,)  

x;i = xol b2, YO = yo/ b3, z{, = zo/! b4. 
A convenient choice for b is 

b=[max(lhl-h21, Ih3+h,- hl-h21, lh3-h41)]’/’. (4.45) 
(c) Another important practical point concerns the change in the vector w = ( x ,  y ,  z )  

in each step of the iteration for equation (4.5). Suppose w, = (x , ,  y,, z , )  and wntl = 
(x ,+~,  Y , + ~ ,  z,+]) are the vectors for the nth and ( n + l ) t h  steps respectively. Then 
w,+~ and w, are related by 

(4.46) 

where w? is the (Newton) correction vector. It may happen that the U,( w,+~) on the 

N 
W , + l =  w, + w, 
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LHS of the matrix equation (4.5) have a different stationary phase point structure from 
the f i  on the RHS. This occurs if wntl has crossed the caustic in (x, y, z )  space and 
causes the iterative method to  fail. To allow for this possibility, we calculate a new 
vector w ; + ~  from 

w; ,+ ]  = w, + w', 

where the correction vector w', is given by 

w', = 2-"'wh n ,  m=O, 1 , 2 , 3 , 4 ,  

and use the smallest value of m that retains the correct stationary phase point structure. 
If this is still unsuccessful we choose instead 

w', = -T"' WT;,  m = 1 , 2 , 3 , 4 .  

If this also fails then we try directions perpendicular t o  w r  for the correction 
vector. By choosing different correction vectors in this manner, it is generally possible 
to get the iterative method to converge for cases where the direct use of (4.46) leads 
to non-convergence. Note that we have not performed a theoretical analysis of the 
convergence of the iterative method, the convergence of the procedures we have 
described being an empirical result. 

(d) The numerical procedures described in (c) for the iterative method are usually 
satisfactory except when the parameters x,  y, z are very close to the caustic. In this 
situation two or more of the fi have almost coalesced and it is better t o  use a numerical 
procedure which exploits this fact. 

Suppose for example that f, and f2 have almost coalesced. To obtain an initial 
guess, we define the quantities 

f; =tu, +fd, f; =2f, +fd> f; = f 3 ,  f; = f 4 ,  

so that (x, y ,  z )  for the f: lie on the caustic because f; and f; are equal. Next we 
construct 2 ,  E, Il for the f: and solve the caustic equation (4.31) to obtain x ,  y ,  z ( z  
is obtained from (4.30)). The initial values required for the solution of (4.31) can be 
obtained from (4.43) using the original t, but with the initial z calculated from (4.30). 

The x, y, z obtained from the caustic equation (4.31) are then used as an initial 
guess for  the solution of the general equation (4.29), which is valid for ( x ,  y, z )  off the 
caustic. This method for  obtaining x, y, z has been found to  work well in practice. 
Note that it is only used for cases where the iterative method fails. 

5. Asymptotic evaluation of the butterfly canonical integral 

In this section, we consider the asymptotic evaluation of the butterfly canonical integral 
in order to illustrate the methods of $ §  3 and 4. The butterfly integral is defined by 

J; 

B(a ,  b, c , d ) = l  e x p [ i ( ~ t h + a t ' + b t ~ + c t ~ + d t ) ] d t  
- X  

(5 .1)  

with a, b, c. d real. The exponent of the integrand of (5.1) is the universal unfolding 
of the butterfly catastrophe (Poston and Stewart 1978).  Note that we have chosen its 
singularity to be if". 
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The stationary phase points for the butterfly can be written 

a f ( a ;  t ) /a t  = ( t - t l ) ( t - t 2 ) ( t - t . l ) ( t - t 4 ) ( r - t 5 ) = o .  

If t ,  is chosen sufficiently far removed from t2, t , ,  f4, t5 ,  we can locally map !(a; t )  
onto the swallowtail canonical form in the neighbourhood of t 2 ,  t3,  t4, t5 .  

In order t o  test the numerical techniques used to  solve the mapping equation (4.1) 
for the parameters x, y, z ,  A, we have set t l  = R I  and I t , l<  R2,  i = 2, 3, 4, 5 (note that 
the second condition includes complex values of f l ) .  For ( R I ,  R2)  we have used the  
combinations (-10, l ) ,  (-20, l ) ,  (-5, l ) ,  ( -8 , l ) .  For each combination of (RI ,  R 2 )  
we then randomly selected 100 sets of { t , ,  i = 2 ,3 ,4 ,5} .  The  numerical procedures 
described in 08 4.1-4.3 were found to work in a satisfactory manner for all 500 sets 
of butterfly input data. 

Table 4 compares accurate values of B(a,  b, c, d )  with the results from the uniform 
swallowtail approximation for t 2 ,  f 3 ,  t4, t ,  together with the stationary phase method 
for t , .  Six sets of {a, b, c, d }  have been used; they give rise to  one, three and five real 
stationary phase points. The  exact values for B ( a ,  b, c, d )  were calculated by our  
quadrature method (Connor and Curtis 1982). Table 2 shows that the exact and 
uniform swallowtail results a re  in excellent agreement for both the real and imaginary 
parts of B ( a ,  b, c, d ) .  The error in the uniform swallowtail approximation is about 
0.004% or  better. 

Since the same quadrature technique has been used to evaluate B( a, b, c, d )  as well 
as S(x, y, 2) and its partial derivatives, it might be thought that in practice it is always 
simpler t o  evaluate the butterfly integral directly rather than use the  uniform asymptotic 
approximation (2.1). However, as the parameters{a, b, c, d} become large, the numeri- 
cal evaluation of B ( a ,  b, c, d )  is computationally much more demanding than is the 
evaluation of the uniform approximation (2.1) (see also Leubner (1981b, 1982) for 
another example). For the parameters in table 4,  the uniform swallowtail approxima- 
tion can be computed at  least five times faster than can B(a,  b, c, d ) .  Note that it is 
not necessary to evaluate S(x, y, z ) ,  dS/dx, dS/dy ,  dS/dz separately because the same 
contour of integration is used in each integral. Rather if we define in the uniform 
expansion (2.1) 

then it is only necessary to evaluate a single integral, namely 
X 

G (  U )  exp[i( u s  + h - 2 ” ~ ~ 3  + h-3”yu2 + h-”’zu)] du. ( 5 . 2 )  

In addition in some applications, an analytic formula for the exponent f ( a ;  t )  of (1.1) 
is not available, rather f ( a ;  t )  has to be computed numerically. This is the case, for 
example, in the semiclassical theory of inelastic and reactive molecular collisions. In 
these applications, the computation of f ( a ;  t )  is often a formidable problem in its own 
right and it is an important advantage of the uniform swallowtail approximation that 
it requires only a knowledge of g ( t ) ,  f ( a ;  t )  and d2f(a;  r ) / a t z  at the four saddle 
points t,. 

We also report in table 4 the results of evaluating B(a ,  b, c, d )  by three other 
approximate methods. The first of these is the transitional swallowtail approximation, 
which is valid when t 2 ,  t 7 .  t4. t5  are close together (see Q 2 ) .  The expression for the 

L 
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transitional swallowtail approximation is obtained by first Taylor expanding f( a; t )  to  
fifth order 

where 

f y a ;  to) = a y ( & ;  t) /at" l ,=,, .  

f ( ' y a ;  to) =o.  
The quantity to is chosen so that 

Using equation (5 .3) ,  the integral (1.1) becomes 

(5.4) 

Next we make the additional approximation of replacing g ( t )  by g( to )  in (5.4). With 
the change of variable when f " ) ( a ;  to) > 0 

t - t l ) = [ 5 ! h / f " ) ( a ;  t, ,)y% 

we finally obtain the following expression for I ( a ) :  

(5.5) 

where f ' " '=fO')(n;  to) .  Equation ( 5 . 5 )  is simple to apply provided that the f ' " ) (a;  to) 
can be readily calculated (as is the case for B ( a ,  b, c, d ) ) .  For the parameters in table 
4, the stationary phase points tZ ,  t,. t4, t5 are close together and the results of the 
transitional swallowtail approximation are in reasonable agreement with the exact 
values, although the agreement is not as good as that for the uniform swallowtail 
approximation. 

Table 4 also shows the results for two further approximate methods. In the double 
uniform Airy approximation, the contribution from t2, t3 is evaluated by the uniform 
Airy formula as is the contribution from t4, rs, whereas the primitive approximation 
applies the stationary phase or saddle point method to each of the t,. Explicit formulae 
for these methods can be found in Connor and Marcus (1971) for example. The 
double uniform Airy and primitive approximations both have large errors in comparison 
with the exact results, in particular the errors for the primitive approximation are 
larger than those for the double uniform Airy approximation. These large errors are 
expected because the proximity of t2,  t 3 ,  t,, t5 means that the conditions for the validity 
of the double uniform Airy and primitive approximations are not satisfied. 

We have also evaluated B(a ,  b, c, d )  for a further 150 sets of ( a ,  b, c, d ) ,  with the 
restriction that r, is always well separated from the four remaining stationary phase 
points. The results are similar to those in table 4. This extensive set of calculations 
provides a consistency check on the accuracy of our exact computations for B(a ,  b, c, d )  
and illustrates the practicality of the methods described in § §  3 and 4 for the uniform 
swallowtail approximation. 
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6. Summary and conclusions 

This paper has described practical methods for the numerical implementation of the 
uniform swallowtail approximation. There are two main problems that must be 
overcome: (a) methods are required for the computation of S(x, y, z ) ,  aS/dx, aS/ay ,  
as/& and (b) it is necessary to evaluate x, y, z,  A from the input function f ( a ;  t ) .  

We have shown that integration along complex contours is an efficient and reliable 
method for the numerical evaluation of S(x, y, z )  and its partial derivatives and results 
of high accuracy are readily obtained. The method is straightforward to program on 
a computer. The numerical values given in tables 1-3 can be used by readers to check 
the accuracy of their own computer programs using either the complex contour 
quadrature technique or some other method. The isometric plots shown in figures 3-6 
together with those in Connor et a1 (1983) systematically illustrate the main properties 

We have also described two methods for the evaluation of the parameters x, y, z,  
A. The first of these is an iterative technique and is valid when ( x ,  y, z )  is not close 
to the swallowtail caustic. The second method is an algebraic technique and is most 
useful when (x, y, z )  lies on the caustic and for the case y = 0. Thus in practice both 
methods are complementary. We used symbolic algebraic computer programs to carry 
out the necessary algebraic manipulations. As an example of the use of the uniform 
swallowtail approximation, we evaluated the butterfly canonical integral B(a,  b, c, d )  
for a large number of values of ( a ,  b, c, d ) .  Like the uniform Pearcey approximation 
(Connor and Farrelly 1981), the uniform swallowtail approximation can now be 
considered a practical tool for the asymptotic evaluation of oscillating integrals. 

of IS(% y, Z) l>  laS/axl, IaS/ay/, laS/azl. 
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